domingo, 5 de fevereiro de 2017

FATORES DETERMINANTES DA QUALIDADE DA IMAGEM RADIOGRÁFICA

FATORES DETERMINANTES DA QUALIDADE DA IMAGEM RADIOGRÁFICA

Os fatores para os quais se identifica à qualidade de uma radiografia são denominados fatores de qualidade da imagem. Os fatores são 4: densidade, contraste, detalhe e distorção. 
Densidade e contraste são propriedades fotográficas que determinam a visibilidade, ao passo que detalhe e distorção são propriedades geométricas que determinam a forma. Embora esses fatores sejam monitorados pelo radiologista, o examinador da radiografia também deverá saber como eles influenciam o resultado.


DENSIDADE RADIOGRÁFICA

A densidade radiográfica pode ser definida como sendo o grau de tonalidade na radiografia. O radiologista controla a densidade radiográfica ajustando a miliamperagem e o tempo de exposição, regulando assim, a intensidade da radiação de raios X durante a exposição. Geralmente a miliamperagem e o tempo são combinados em uma única unidade denominada miliamperes-segundo (mAs). Além isso, a distância influi na densidade radiográfica, de acordo com a lei do quadrado inverso. 
Por exemplo, duas vezes a distância da fonte de radiação vai reduzir em um quarto a densidade na radiográfica. No âmbito da radiologia, geralmente, são utilizadas distâncias padrão, de modo que a mAs constitui o fator de controle primário da densidade radiográfica. O radiologista usa seus conhecimentos sobre densidade, volume ou espessura e posicionamento do corpo do paciente para selecionar a mais apropriada para cada tipo de radiografia. Uma radiografia com subexposição (pouquíssima densidade radiográfica) ou superexposição (excesso) não reproduzirá a imagem anatômica com precisão.


                                              *Observem as diferentes densidades


CONTRASTE RADIOGRÁFICO

Na radiografia, contraste radiográfico é a diferença entre as densidades adjacentes. Uma grande diversidade de densidades produz o maior contraste, enquanto que, quanto menor for essa diversidade, menor é o contraste. Um contraste maior ou menor não é o fundamental. O objetivo principal é o detalhamento anatômico. Portanto, numa radiografia de tórax, o ideal é contraste menor, que possibilita o detalhamento das finas linhas estruturais do pulmão e as várias tonalidades cinza correspondentes aos tecidos moles do coração e dos pulmões. Contudo, no muito das vezes, a radiografia os ossos deve ser bem contrastada, para o possível detalhamento das margens corticais.
O fator de controle primário do contraste radiográfico é o ajuste correto da quilovoltagem (kVp). Quanto mais alta a kVp, maior é a intensidade da radiação, de modo que sua penetração ocorre mais uniformemente sobre todas as densidades dos tecidos. O resultado será menor perda da intensidade da radiação pela absorção dos tecidos, e, conseqüentemente, menor contraste na radiografia. Em contrapartida, quanto mais baixa a kVp, maior será a perda da intensidade da radiação, porém maior será o
contraste na radiografia.
A quilovoltagem é um fator de controle da densidade. Altas quilovoltagens resultam correspondentes aumentos da densidade, o que reduz a necessidade de mAs. A relação entre mAs e kVp é um fator de controle técnico, que reduz o risco de exposição à radiação, sem prejuízo da qualidade da radiografia. Via de regra, a prática é utilizar maior kVp e menor mAs, o que não impede a reprodução e imagens suficientes para o diagnóstico.


DETALHE RADIOGRÁFICO

Detalhe radiográfico é definido como a precisão ou nitidez geométrica das linhas estruturais reproduzidas na radiografia, é também chamado definição, nitidez, resolução, ou simplesmente detalhe. A insuficiência de detalhes é conhecida como borramento ou falta de nitidez.
O principal fator de controle do detalhe é o movimento, que pode ser voluntário, como a respiração, ou involuntário, como os batimentos cardíacos, o peristaltismo ou a vibração do equipamento.
Outros fatores que influenciam o detalhe são as distâncias entre a fonte de radiação e o paciente, o paciente e o filme, e a amplitude do feixe de radiação (ou feixe do feixe). Os raios-X obedecem às leis comuns da luz e da projeção, de forma que as variáveis mais importantes para a imagem ou radiografia é o diâmetro do feixe de radiação, a distância entre a fonte de radiação e o paciente, e a distância entre o paciente e o filme. Essas variáveis são controladas de modo a reduzir o máximo possível o borramento da imagem. Com relação ao efeito da distância do objeto a ser radiografado, o examinador deve estar ciente que quanto mais próximo o objeto estiver do filme radiográfico, mais nítida será a sua reprodução. A radiografia de tórax, por exemplo, geralmente é feita com projeção PA, porque os pulmões estão localizados na região anterior do tórax, e, portanto, essa posição fará com que eles fiquem mais próximos do filme. A coluna lombar, porém, é radiografada com projeção AP, pois, assim, ficará mais próxima do filme. Além disso, os segmentos da coluna, por estarem mais próximos do filme, serão reproduzidos com maior nitidez e os processos espinhosos serão mais bem detalhados.



                                *Observem como o detalhe permite visualizarmos bem a fratura


DISTORÇÃO RADIOGRÁFICA

Distorção, como o próprio nome indica, é a deformação ou distorção da forma do objeto radiografado. Essa reprodução distorcida é chamada distorção do tamanho ou da forma. A distorção do tamanho compreende tanto o alongamento como o encurtamento das dimensões na imagem. Os principais fatores de controle da distorção são: distância entre a fonte de radiação e o paciente, e este com o filme, o posicionamento do corpo e a incidência dos raios centrais do feixe. A distância entre a fonte de radiação e o filme, guardada na maioria das radiografias ósseas, é de 40 polegadas. A outra distância importante, entre o objeto e o filme, é variável. O controle dessas distâncias fornece o fator de magnificação da imagem. A magnificação é igual a distância existente entre a fonte de radiação e o filme, dividida pela distância entre a fonte de radiação e o paciente. Isso significa que, quanto mais próximo o objeto a ser radiografado estiver do filme, menor distorção ou magnificação ocorrerá, e melhor será o detalhamento. Ao examinar a radiografia e tentar conceber a terceira dimensão, é preciso entender que borramento e magnificação indicam que essa parte a estrutura estava distante do filme, portanto mais próximo da fonte de radiação.
A distorção da forma é a magnificação desigual da estrutura que está sendo examinada. A estrutura radiografada poderá parecer alongada, maior que a original, ou encurtada, menor que a original. Embora sejam feitos ajustes para minimizar a distorção, os planos irregulares do sistema esquelético, a distância entre eles e o filme, e a divergência do feixe de radiação, sempre possibilitam algum grau de distorção. O conceito de divergência do feixe de radiação é fundamental para a compreensão a distorção gerada. Assim como a luz, os raios X são divergentes em linha reta. Apenas a porção central do feixe que chega ao objeto e ao filme produz a radiografia. Quanto maior a distância que os raios centrais tenham que percorrer, maior será a distorção da imagem, devido aos efeitos da divergência. Além disso, quanto mais inclinada for a estrutura, maior será a distorção. Para minimizar a distorção, o corpo do paciente deverá ser posicionado junto ao filme o mais paralelo possível, e o feixe de radiação deverá ser focado o mais diretamente possível sobre o objeto ou estrutura a ser radiografada. O correto posicionamento do corpo resulta menor distorção e maior abertura das articulações, ou seja, os espaços articulares serão radiografados sem interferência das extremidades ósseas.

O QUE SÃO OS RAIOS-X?

O que são os Raios-X?

Os raios-X são uma onda eletromagnética, como a luz visível, as ondas de rádio, os raios infra-vermelhos, e os raios ultra-violetas. As ondas eletromagnéticas tem como características: a sua freqüência e o seu comprimento de onda, sendo estas duas características inversamente proporcionais, ou seja, quanto maior a freqüência menor o comprimento de onda. A energia de uma onda é diretamente proporcional à sua frequência.

Como o raio-X é uma onda de alta energia, o seu comprimento de onda é muito curto da ordem de 10–12 m (um picômetro) e sua freqüência é da ordem de 1016 Hz. O comprimento de onda do raio-X está próximo do raio-?, que é radioativo. Com este comprimento de onda muito curto, estes raios tem a capacidade de penetrar na matéria, o que possibilita sua utilização no estudo dos tecidos do corpo humano.

                                   *Espectro energético das ondas eletromagnéticas


COMO É FEITA A PRODUÇÃO DOS RAIOS-X

Raios-X são produzidos ao se liberar energia no choque de elétrons de alta energia cinética contra uma placa de metal. Para tais efeitos utiliza-se um tubo de raio-X que consiste num tubo de vidro à vácuo com dois eletrodos de tungstênio (diodo), um ânodo (pólo positivo) e um cátodo (pólo negativo). O cátodo consiste num filamento de tungstênio muito fino que esquenta com a passagem de corrente elétrica de alta voltagem. Com isto os elétrons do tungstênio adquirem suficiente energia térmica para abandonar o cátodo (emissão termoiônica). Devido a alta voltagem cria-se também uma diferença de potencial entre os eletrodos o que faz que os elétrons emitidos pelo filamento de tungstênio sejam acelerados em direção ao ânodo (pólo positivo). A energia cinética dos elétrons depende da voltagem entre os eletrodos: quanto mais alta a voltagem maior a energia cinética. O ânodo está revestido por tungstênio e funciona como alvo para os elétrons.

No choque dos elétrons com o alvo de tungstênio a maioria da energia cinética destes é transformada infelizmente em calor, mas uma pequena parte produz raios-X através de três fenômenos: radiação característica, desaceleração (“Bremsstrahlung”) e choque nuclear.

A radiação característica ocorre quando o elétron em movimento choca-se com um elétron da camada interna do átomo do alvo de tungstênio e o desloca (caso a energia que ele adquiriu ao deslocar-se do cátodo para o ânodo seja maior que a energia de ligação da camada eletrônica), com isso a camada de energia que este elétron do átomo ocupava fica vaga.

Este átomo agora ionizado precisa se estabilizar. Para isto um elétron de uma camada mais externa migra para a vaga na camada de energia interna, liberando neste processo uma determinada e bem precisa quantidade de energia (fóton) na forma de raios-X. Esta energia corresponde a diferença entre as energias de ligação das duas camadas (a externa, que o elétron ocupava, e a mais interna que ele passou a ocupar). O fenômeno é chamado de radiação característica, já que essa energia das camadas é particular de cada elemento (poderíamos descobrir qual é o elemento do alvo a partir da análise das energias dos fótons de Rx produzidos pela radiação característica). No entanto a chance deste fenômeno (radiação característica) ocorrer não é muito grande.

Na desaceleração, ou efeito de “Bremsstrahlung”, o elétron em movimento tem sua trajetória desviada pela positividade do núcleo. Este desvio de trajetória é acompanhado por uma desaceleração o que faz que parte da energia cinética do elétron seja emitida como fóton de raio-X, que será de maior energia (maior freqüência) quanto maior for o ângulo de desvio da trajetória e quanto mais próximo estiver este elétron do núcleo. A desaceleração tem pouca chance de ocorrer em regiões próximas ao núcleo, devido à densidade nuclear (na verdade, o átomo é bem diáfano, e se compararmos o tamanho do núcleo a uma laranja, o limite do átomo de um determinado elemento estaria, por exemplo, a 3 Km de distância). Assim, a maioria dos elétrons sofrem interações distantes do núcleo e produzem fótons de baixa energia, agora não mais numa faixa de energia característica, mas sim numa variação constante, dependendo do co-seno do ângulo do desvio. A probabilidade desse fenômeno ocorrer também é pequena, porém tende a ser a maior fonte dos fótons de raios-X em relação aos dois outros fenômenos.

                                      *Fenômeno de Bremsstrahlung (desaceleração)


No choque nuclear, o elétron choca-se com o núcleo e produz um fóton de alta energia. Nesse caso, 100% da energia que ele adquiriu acelerando do cátodo para o ânodo é transformada em um fóton de raio-x. Por exemplo, se a diferença de potencial entre o cátodo e o ânodo é de 100.000 Volts (e na verdade é dessa ordem), o elétron que se chocar diretamente com o núcleo vai produzir um fóton de raio-x com energia de 100.000 eV (eletron-Volt). Aqui também, e principalmente neste caso, a probabilidade deste fenômeno ocorrer é baixa.

Dessa forma, temos que apenas uma parte da energia dos elétrons é convertida em raios-X pelos três fenômenos acima, sendo a maioria transformada em calor.


A INTERAÇÃO DOS RAIOS-X COM A MATÉRIA

Na obtenção da imagem por raios-X dois tipos de interação entre os raios-X e a matéria são importantes: o efeito fotoelétrico e o efeito Compton. Aqui, diferente da produção de raio-X, é o fóton que vai interagir com o átomo do organismo que se quer estudar (ou melhor produzir uma imagem).

O efeito fotoelétrico ocorre quando um fóton de raio-X choca-se com um elétron de um átomo e desloca-o de sua camada orbitária no átomo. Com a perda do elétron, o átomo fica ionizado. Nesta situação toda a energia do fóton de raio-X é utilizada para deslocar o elétron. Este efeito é muito acentuado nos materiais muito densos como, por exemplo, no chumbo e depende do número atômico do elemento (na verdade, é proporcional ao cubo desse número).


                                                            *Efeito fotoelétrico


COMO É OBTIDA A IMAGEM RADIOGRÁFICA ATRAVÉS DOS RAIOS-X

A imagem de radiografia convencional depende dos fótons resultantes da interação com o objeto que dependem por sua vez da espessura do objeto e da capacidade deste de absorver raios-X.

A detecção dos raios-X é feita através de um filme semelhante ao filme fotográfico. Este filme é composto de sais de prata (AgBr, AgI). Quando sensibilizado por um fóton de raio-X ou pela luz visível, o cátion de prata (íon positivo) acaba sendo neutralizado e vira metal (Ag0), e escurece. Por outro lado, o sal de prata que não foi sensibilizado pelo raio-X ou pela luz fica transparente.

Os filmes normalmente são compostos de camadas de plástico (poliéster) protegidas da luz. O uso de camadas de prata recobrindo as duas superfícies do plástico aumenta a sensibilidade do filme aos raios-x.

Resumindo a obtenção de imagens radiográficas: o feixe de raios-X piramidal vai atravessar o objeto que no nosso caso é o paciente. De acordo com as densidades das diversas estruturas que foram atravessadas pelo raio-X, haverá maior ou menor absorção destes raios. A resultante após a interação dos raios-X com o paciente é que irá sensibilizar o filme radiográfico, que dará a imagem final. É importante saber que as diferenças de densidade determinam as características radiológicas dos diferentes materiais e estruturas. Assim materiais densos como os metais absorvem muito os raios-X, pois tem um número atômico muito alto. Por outro lado, o ar, com densidade atômica e número atômico baixos não absorve os raios-x. Assim, temos em ordem crescente 5 densidades radiológicas básicas: ar, gordura, água, cálcio e metal.